(1) x − 3
Square of (x − 3) = (x − 3)2
The expression (x − 3)2 is of the form (a − b)2 .
Thus, we can use the identity (a − b)2 = a2 − 2ab + b2 .
∴ (x − 3)2 = (x)2 − 2 (x) (3) + (3)2
= x2 − 6x + 9
(2) m − 8
Square of (m − 8) = (m − 8)2
The expression (m − 8)2 is of the form (a − b)2 .
Thus, we can use the identity (a − b)2 = a2 − 2ab + b2 .
∴ (m − 8)2 = (m)2 − 2 (m) (8) + (8)2
= m2 − 16m + 64
(3) 9 − a
Square of (9 − a )= (9 − a)2
The expression (9 − a)2 is of the form (a − b)2 .
Thus, we can use the identity (a − b)2 = a2 − 2ab + b2 .
∴ (9 − a)2 = (9)2 − 2 (9) (a) + (a)2
= 81 − 18a + a2
(4) 3x − 7
Square of (3x − 7) = (3x − 7)2
The expression (3x − 7)2 is of the form (a − b)2 .
Thus, we can use the identity (a − b)2 = a2 − 2ab + b2 .
∴ (3x − 7)2 = (3x)2 − 2 (3x) (7) + (7)2
= 9x2 − 42x + 49
(5) 10 − 3p
Square of 10 − 3p = (10 − 3p)2
The expression (10 − 3p)2 is of the form (a − b)2 .
Thus, we can use the identity (a − b)2 = a2 − 2ab + b2 .
∴ (10 − 3p)2 = (10)2 − 2 (10) (3p) + (3p)2
= 100 − 60p + 9p2