The correct option is
A 0Let
△=2∣∣
∣
∣∣111abca2−bcb2−cac2−ab∣∣
∣
∣∣Applying C2→C2−C1;C3→C3−C1
△=2∣∣
∣
∣∣100ab−ac−aa2−bcb2−a2−ca+bcc2−ab−a2+bc∣∣
∣
∣∣
=2∣∣
∣
∣∣100a(b−a)(c−a)a2−bc(b−a)(b+a+c)(c−a)(c+a+b)∣∣
∣
∣∣
taking (b−a) common from C2 and (c−a) from C3, we get
△=2(b−a)(c−a)∣∣
∣∣100a11a2−bca+b+ca+b+c∣∣
∣∣
Expanding it along R1, we get
△=2(b−a)(c−a)(a+b+c−(a+b+c))=0