The correct option is C 22n
Consider
(1+x)2n+1=2n+1C0+2n+1C1x+2n+1C2x2+...2n+1C2n+1x2n+1
Substituting, x=1, we get
22n+1=2n+1C0+2n+1C1+2n+1C2+...2n+1C2n+1
Substituting x=−1 we get
0=2n+1C0−2n+1C1+2n+1C2+...−2n+1C2n+1
Subtracting (ii) from (i), we get
22n+1=2[2n+1C1+2n+1C3+2n+1C5+...2n+1C2n+1]
22n=[2n+1C1+2n+1C3+2n+1C5+...2n+1C2n+1]