Let y=−2(sin6x+cos6x)+3(sin4x+cos4x)
We know that (sin2x+cos2x)=1
a2+b2=(a+b)2−2ab and a3+b3=(a+b)3−3ab(a+b)
Using these results we can reduce
y=−2[(sin2x+cos2x)3−3sin2xcos2x(sin2x+cos2x)]+3[(sin2x+cos2x)2−2sin2xcos2x]
y=−2[1−3sin2xcos2x]+3[1−2sin2xcos2x]
y=1