Find A−1, if A=∣∣ ∣∣011101110∣∣ ∣∣ and show that A−1=A2−3I2.
We have, A=∣∣
∣∣011101110∣∣
∣∣
∴A11=−1,A12=1,A13=1,A21=1,A22=−1,A23=1,A31=1,A32=1 and A33=−1∴adj A=∣∣
∣∣−1111−1111−1∣∣
∣∣T=∣∣
∣∣−1111−1111−1∣∣
∣∣
and |A|=−1(−1)+1(1)=2
∴A−1=adj A|A|=12⎡⎢⎣−1111−1111−1⎤⎥⎦ .....(i)
and A2=⎡⎢⎣011101110⎤⎥⎦.⎡⎢⎣011101110⎤⎥⎦=⎡⎢⎣211121112⎤⎥⎦ ..... (ii)
∴A2−3I2=12⎧⎪⎨⎪⎩∣∣
∣∣211121112∣∣
∣∣−∣∣
∣∣300030003∣∣
∣∣⎫⎪⎬⎪⎭=12∣∣
∣∣−1111−1111−1∣∣
∣∣
=A−1 [using Eq. (i)]
Hence proved.