Here |A|=ω∣∣
∣∣42311131−2∣∣
∣∣=4(−2−1)−2(−2−3)+(1−3)=−12+10−6=−8≠0⇒A−1 exists and A−1=1|A| adj A.
A11=∣∣∣111−2∣∣∣=−3,A12=−∣∣∣113−2∣∣∣=5,A13=∣∣∣1131∣∣∣=−2
A21=−∣∣∣231−2∣∣∣=7,A22=∣∣∣433−1∣∣∣=−17,A23=−∣∣∣4231∣∣∣=2
A31=∣∣∣2311∣∣∣=−1,A32=−∣∣∣4311∣∣∣=−1,A33=∣∣∣4211∣∣∣=2
adj.A =⎡⎢⎣−35−27−172−1−12⎤⎥⎦T=⎡⎢⎣−37−15−17−1−222⎤⎥⎦
∴A−1=1|A|adj.A=−18⎡⎢⎣−37−15−17−1−222⎤⎥⎦
=18⎡⎢⎣3−71−51712−2−2⎤⎥⎦
The given system of equation is
4x+2y+3z=2
x+y+z=1
3x+y−2z=5
This system can be written as Ax=B
Where A=⎡⎢⎣42311131−2⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ and B=⎡⎢⎣215⎤⎥⎦
As |A|≠0, the given system has a unique solution X=A−1B
⇒X=⎡⎢⎣3−71−51712−2−2⎤⎥⎦⎡⎢⎣215⎤⎥⎦
=18⎡⎢⎣6−7+5−10+17+54−2−10⎤⎥⎦=18⎡⎢⎣412−8⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=12⎡⎢⎣13−2⎤⎥⎦
⇒x=12,y=32,z=1
Hence, the solution of the given system of equation is
x=12,y=32,z=−1