Using Binomial theorem, the expressions (a+b)4 and (a−b)4 can be expanded as,
(a+b)4=4C0a4+4C1a3b+4C2a2b2+4C3ab3+4C4b4)
(a−b)4=4C0a4−4C1a3b−4C2a2b2−4C3ab3+4C4b4)
∴(a+b)4−(a−b)4 =4C0a4+4C1a3b+4C2a2b2+4C3ab3+4C4b4−[4C0a4−4C1a3b−4C2a2b2−4C3ab3+4C4b4]
= 2(4C1a3b+4C3ab3)=2(4a3b+4ab3)
= 8ab(a2+b2)
Now by putting a=√3 and b=√2, we obtain
(√3+√2)4−(√3−√2)4=8(√3)(√2){(√3)2+(√2)2}=8(√6){3+2}=40√6