We have,
T1=nC0anb0=729 ...(i)
T2=nC1an−1b=7290 ...(ii)
T3=nC2an−2b2=30375 ...(iii)
From (i) an=729 ...(iv)
From (ii) nan−1b=7290 ...(v)
From (iii) n(n−1)2an−2b2=30375 ...(vi)
Multiplying (iv) and (vi), we get
n(n−1)2a2n−2b2=729×30375 ...(vii)
Squaring both sides of (v), we get
n2a2n−2b2=(7290)2 ...(viii)
Dividing (vii) by (viii), we get
n(n−1)a2n−2b22n2a2n−2b2=729×303757290×7290
⇒(n−1)2n=3037572900⇒n−12n=512
⇒12n−12=10n
⇒2n=12⇒n=6
From (iv) a6=729⇒a6=(3)6⇒a=3
From (v) 6×35×b=7290⇒b=5
Thus, a=3, b=5 and n=6.