wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find a, b and n in the expansion of (a+b)n if the first three terms of the expansion are 729,7290 and 30375, respectively. Insert a number k so that a, k, ,b, n forms an AP.

Open in App
Solution

Solution - we know that -
(a+b)n=nCoanbo+nC1an1b+nC2an2b2++nCn1abn1+nCnaonn
=an+nC1an1b1+nC2an2b2+...+nCn+bn1+bn
So, first 3 terms are an,nC1an1b and nC2an2b2
and given, an=729....(1)
nC1b=7290.....(2)
nC2an2b2=30375....(3)
diving (1) and (2)
annC1an1b=7297290anb=110...(4)
[nCr=nnrr]
dividing (2) and (3)
nC1an1bnC1an2b2=729030375
29(n1)b=625....(5)
dividing (4) and (5)
anb2a(n1)b=110625n12n=51212n12=10n
2n=12
n=6 putting n=6 in eqn (1)
and an=729a6=729=a6=(3)6
a=3
putting a=3 and n=6 in eqn (5)
2a(n1)b=625
65b=625b=5
Here a=3,b=5,n=6
a,k,b,n forms a A.P.
So, k=4

1078185_450479_ans_70763b1ec0a2444aaf5003ba4f21748f.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon