Find a,b and n in the expansion of (x+b)n if the first three terms in the expansion are 729, 7290 and 30375 respectively.
It is given that
T1=729
T2=7290
and, T3=30375
∴T1=nC0×an=729
T2=nC1×an−1×b=7290
T2T1=nCn−1×an−1×bnC0×an=7290729
⇒nCn−1×an−1×bnC0×an=10
⇒nCn−11×ba=10
⇒n!(n−n+1)!(n−1)!×ba=10
⇒n!(n−1)!×ba=10
⇒n(n−1)!(n−1)!×ba=10
⇒ba=10n......(i)
and,
T3T2=nCn−2×an−2×b2nCn−1×an−1×b=303757290
⇒nCn−2nCn−1×ba=256
⇒n−2+1n−(n−1)+1×ba=266
[∵nCrnCr−1=n−r+1r]
⇒n−12×bx=256
⇒ba=256×2(n−1)
⇒ba=253(n−1)
Comparing equation (i)and equation (ii), we get
10n=253(n−1)
⇒30(n−1)=25
⇒30n−30=25n
⇒5n=30
⇒n=6
Now,
T1=nC0×an=729
⇒an=729
⇒a6=729
⇒a6=36[∵n=6]
⇒a=3
Putting a =3 in n =6 in equation (i), we get
b3=106
⇒b=102=5
Hence, a =3, b =5 and n =6,