wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find A(DOE) : A(DCE)
185871.jpg

Open in App
Solution

In s ADE and ABC,
DAE=BAC (Common angle)
ADE=ABC (Corresponding angles of parallel lines)
AED=ACB (Corresponding angles of parallel lines)
Therefore, ADEABC (AAA rule)
Hence, ADAB=DEBC
ADAD+DB=DEBC
11+DBAD=DEBC
11+45=DEBC
59=DEBC
Now, In s, ODE and OBC,
DOE=BOC (Vertically opposite angles)
DEO=OBC (Alternate angles of parallel lines)
EDO=OCB (Alternate angles of parallel lines)
Hence, ODEOCB (AAA rule)
OCOD=BCDE
OCOD+1=95+1
OC+ODOD=9+55
DCOD=145
ODDC=514

Now, from E drop a perpendicular on CD such that EN CD
Ar.DOEAr.DCE=12DO×EN12DC×EN
Ar.DOEAr.DCE=DODC=514


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon