In △s ADE
and ABC,
∠DAE=∠BAC (Common angle)
∠ADE=∠ABC (Corresponding angles of parallel
lines)
∠AED=∠ACB (Corresponding angles of parallel
lines)
Therefore, △ADE∼△ABC (AAA rule)
Hence, ADAB=DEBC
ADAD+DB=DEBC
11+DBAD=DEBC
11+45=DEBC
59=DEBC
Now, In △s, ODE and OBC,
∠DOE=∠BOC (Vertically opposite angles)
∠DEO=∠OBC (Alternate angles of parallel
lines)
∠EDO=∠OCB (Alternate angles of parallel
lines)
Hence, △ODE∼△OCB (AAA rule)
∴ OCOD=BCDE
OCOD+1=95+1
OC+ODOD=9+55
DCOD=145
ODDC=514
Now, from E drop a perpendicular on CD such that EN ⊥
CD
Ar.△DOEAr.△DCE=12DO×EN12DC×EN
Ar.△DOEAr.△DCE=DODC=514