CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
Question

Find a cos3xsin2xsin4x+cos5xsin4xsin6x+cos7xsin6xsin8x+cos9xsin8xsin10x=12(cosecx)[cosec2xcosecax]

Open in App
Solution

Let f(x)=cos3xsin2xsin4x+cos5xsin4xsin6x+cos7xsin6xsin8x+cos9xsin8xsin10x
Multiply and divide by (2sinx) in whole expression
f(x)=sin4xsin2x2sinxsin2xsin4x+sin6xsin4x2sinxsin4xsin6x+sin8xsin6x2sinxsin6xsin8x+sin10xsin8x2sinxsin8xsin10x
=cosecx[cosec2xcosec10x]2
Ans: a = 10

flag
Suggest Corrections
thumbs-up
0
mid-banner-image
mid-banner-image
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App