wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find a if 4cos2π7cosπ71=acosaπ7

Open in App
Solution

ei(π7)=isin(π7)+cos(π7)
Let m=ei(π7)
m7=1m6+m4+m2+1=m5+m3+m
Let a=m5+m3+m
ma=m6+m4+m2
ma=a1a=11m
a=11cosπ7isinπ7
=1cosπ7+isinπ7(1cosπ7)2+sin2π7
=1cosπ7+isinπ72(1cosπ7)
=12+i(sinπ7(1cosπ7))
m+m3+m5=12+i(sinπ72(1cosπ7))

Real part(a)=Real part (m+m3+m5)=12
Given , cos3π7cos2π7+cosπ7=1m
2cosπ7+2cos3π7=12cos5π7
4cosπ7cos2π71=2cos5π7
4cosπ7cos2π71=2cos2π7
Given, 4cosπ7cos2π71=acosaπ7
a=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon