wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find a particular solution of each of the following differential equations:
(i) 1+x2dydx+2xy=11+x2; y=0, when x=1

(ii) (x + y) dy + (x − y) dx = 0; y = 1 when x = 1

(iii) x2 dy + (xy + y2) dx = 0; y = 1 when x = 1

Open in App
Solution

i We have,1+x2dydx+2xy=11+x2dydx+2x1+x2y=11+x22Comparing with dydx+Py=Q, we getP=2x1+x2 Q=11+x22Now, I.F.=e2x1+x2dx =elog 1+x2=1+x2So, the solution is given byy×I.F.=Q×I.F. dx +Cy1+x2=11+x2 dx+Cy1+x2=tan-1 x+C .....1Now, When x=1, y=0 01+1=tan-1 1+CC=-1C=-π4Putting the value of C in 1, we gety1+x2=tan-1 x-π4

ii We have,x+ydy+x-ydx=0dydx=y-xx+yLet y=vxdydx=v+xdvdx v+xdvdx=vx-xx+vxxdvdx=v-11+v-vx dvdx=v-1-v-v21+vxdvdx=-v2+11+v1+vv2+1dv=-1xdx

Integrating both sides, we get1+v1+v2dy=-1xdx112+v2dy+122v1+v2=-1xdxtan-1 v+12log1+v2=-log x+C2tan-1 v+log1+v2+2log x =2C2tan-1 v+log1+v2x2=k where, k=2C2tan-1 yx+log1+y2x2x2=k2tan-1 yx+log x2+y2=k .....1Now, When x=1, y=1 2tan-1 1+log 2=kk=π2+log 2Putting the value of k in 1, we get2tan-1 yx+log x2+y2=π2+log 2


iii We have,x2dy+xy+y2dx=0dydx=-xy+y2x2Let y=vxdydx=v+xdvdx v+xdvdx=-vx2+v2x2x2xdvdx=-v+v2-vxdvdx=-2v-v21v2+2vdv=-1xdx

Integrating both sides, we get1v2+2vdy=-1xdx1v2+2v+1-1dy=-1xdx1v+12-12dy=-1xdx12×1logv+1-1v+1+1=-log x+log C12logvv+2=-log x+log Clogvv+2=-2log x+2log Clogvv+2+log x2=log C2logvx2v+2=log C2 vx2v+2=C2 vx2v+2=k, where k=2Cyxx2yx+2=k x2yy+2x=k .....1Now, When x=1, y=1 11+2=k k=13Putting the value of k in 1, we getx2yy+2x=133x2y=±y+2xBut y1=1 does not satisfy the equation 3x2y=-y+2x. 3x2y=y+2xy=2x3x2-1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Diameter and Asymptotes
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon