Find a particular solution of the differential equation dydx+ycotx=4x cosecx(x≠0) given that y=0 when x=π2
Given, differential equation is dydx+y cotx=4x cosecx ...(i)
On comparing with the form dydx+Py=Q, we get
P=cotx, Q=4x ~cosecx and IF=e∫Pdx
∴IF=e∫cotx dx⇒IF=elog|sinx|=sinx
The general solution of the given differential equation is given by
y.IF=∫Q×IFdx+C⇒ysinx=∫4x cosecx sinxdx+C⇒y sinx=∫4xdx+C⇒y sinx=4.x22+C⇒y sinx=2x2+C
Now, x=π2 and y=0 ∴0×sinπ2=2(π2)2+C⇒C=−π22
On putting the value of C in Eq. (ii), we get
y sinx=2x2−π22