(x+1)dydx=2e−y−1dy2e−y−1=dxx+1dy2e−y−1=ln(x+1)+c
Let t=2e−y−1
So, dt=−2e−ydy
Putting these in obtained equation
−dtt(t+1)=ln(x+1)+cln(t)−ln(t+1)=ln(x+1)+cln(2e−y−1)−ln(2e−y)=ln(x+1)+c
Putting x=0,y=0
ln(1)−ln2=ln1+cc=−ln2
Particular solution is
ln(2e−y−1)−ln(2e−y)=ln(x+1)−ln2