Step 1: Simplification of given data
Let the given points be A(7,6) and B(3,4)
Let C be a point on the x−axis
Coordinates of C=(x,0)
We know that distance between two points (x1,y1) and (x2,y2) is
D=√(x2−x1)2+(y2−y1)2
Distance between A(7,6) & C(x,0)
AC=√(x−7)2+(0−6)2
=√(x−7)2+36
Distance between B(3,4) & C(x,0)
BC=√(x−3)2+(0−4)2
=√(x−3)2+16
Step 2: Solve for required point C
Given that point C is equidistant from the points A & B
Hence, Distance AC=Distance BC
⇒√(x−7)2+36=√(x−3)2+16
Squaring both sides
⇒(√(x−7)2+36)2=(√(x−3)2+16)2
⇒(x−7)2+36=(x−3)2+16
⇒(x−7)2−(x−3)2=16−36
⇒x2+49−14x−(x2+9−6x)=−20
⇒x2+49−14x−x2−9+6x=−20
⇒−8x+40=−20
⇒8x=40+20
⇒x=608=152
Therefore, Required point = C(x,0)=(152,0)