We know that the distance between the two points (x1,y1) and (x2,y2) is d=√(x2−x1)2+(y2−y1)2
Let the given points be A=(5,2) and B=(−4,3) and let the point on y-axis be P(0,y).
We first find the distance between P(0,y) and A=(5,2) as follows:
PA=√(x2−x1)2+(y2−y1)2=√(5−0)2+(2−y)2=√52+(2−y)2=√25+(2−y)2
Similarly, the distance between P(0,y) and B=(−4,3) is:
PB=√(x2−x1)2+(y2−y1)2=√(−4−0)2+(3−y)2=√(−4)2+(3−y)2=√16+(3−y)2
Since the point P(0,y) is equidistant from the points A=(5,2) and B=(−4,3), therefore, PA=PB that is:
√25+(2−y)2=√16+(3−y)2
⇒(√25+(2−y)2)2=(√16+(3−y)2)2
⇒25+(2−y)2=16+(3−y)2
⇒(2−y)2−(3−y)2=16−25
⇒(4+y2−4y)−(9+y2−6y)=−9(∵(a−b)2=a2+b2−2ab)
⇒4+y2−4y−9−y2+6y=−9
⇒2y−5=−9
⇒2y=−9+5
⇒2y=−4
⇒y=−42=−2
Hence, the point on the y-axis is (0,−2).