Find a relation between x and y such that the point (x,y) is equidistant from the point (3,6) and (−3,4).
The correct option is A 3x+y−5=0
Sol. A(3,6) and B(−3,4) are the given points. Point P(x,y) is equidistant from the points A and B.
PA=PB
⇒√(x−3)2+(y−6)2=√(x+3)2+(y−4)2
⇒(x−3)2+(y−6)2=(x+3)2+(y−4)2
⇒x2−6x+9+y2−12y+36=x2+6x+9+y2−8y+16
⇒x2−6x+9+y2−12y+36−x2−6x−9−y2+8y−16=0
⇒−12x−4y+20=0
⇒12x+4y−20=0
⇒3x+y−5=0