Find |a×b|, if a=^i−7^j+7^k and b=3^i−2^j+2^k
It is given that a=^i−7^j+7^k and b=3^i−2^j+2^k ∴a×b=∣∣ ∣ ∣∣^i^j^k1−773−22∣∣ ∣ ∣∣=(−14+14)^i−(2−21)^j+(−2+21)^k =0^i+19^j+19^k⇒|a×b|=√02+(19)2+(19)2=√2×(19)2=19√2
Find →a.(→b×→c), if →a=2^i+^j+3^k,→b=−^i+2^j+^k and →c=3^i+^j+2^k.
Let a=^i+4^j+2^k,b=3^i−2^j+7^k and c=2^i−^j+4^k. Find a vector d which is perpendicular to both a and b and c.d = 15
Find a unit vector perpendicular to each of the vectors a + b and a - b, where a=3^i+2^j+2^k and b=^i+2^j−2^k