We have,
→a=3^i+2^j+2^k and →b=^i+2^j−2^k
∴→a+→b=4^i+4^j,→a−→b=2^i+4^k
(→a+→b)×(→a−→b)=∣∣
∣
∣∣^i^j^k440204∣∣
∣
∣∣=^i(16)−^j(16)+^k(−18)=16^i−16^j−8^k
∴∣∣(→a+→b)×(→a−→b)∣∣=√162+(−16)2+(−8)2
=√22×82+22×82+82
=8√22+22+1=8√9=8×3=24
Hence,
the unit vector perpendicular to each of the vectors →a+→b and →a−→b is given by the relation.
=±(→a+→b)×(→a−→b)|(→a+→b)×(→a−→b)|=±16^i−16^j−8^k24
=±2^i−2^j−^k3=±23^i±23^j±13^k