wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find a unit vector perpendicular to each of the vector a+b and ab,where a=3^i+2^j+2^k and b=^i+2^j2^k

Open in App
Solution

Given : a=3^i+2^j+2^k and b=^i+2^j2^k

(a+b)=(3^i+2^j+2^k)+(^i+2^j2^k)

(a+b)=4^i+4^j+0^k

(ab)=(3^i+2^j+2^k)(^i+2^j2^k)

(ab)=2^i+0^j+4^k

Let c=(a+b)×(ab)

c=∣ ∣ ∣^i^j^k440204∣ ∣ ∣

c=^i[(4×4)(0×0)]

^j[(4×4)(2×0)]

+^k[(4×0)(2×4)]

c=^i(160)^j(160)+^k(08)

c=16^i16^j8^k

Unit vectorc=cmagnitude ofc

c=(16^i16^j8^k)(16)2+(16)2+(8)2

c=(16^i16^j8^k)256+256+64

c=(16^i16^j8^k)576

c=(16^i16^j8^k)24

c=23^i23^j13^k

Unit vector c(^c)=23^i23^j13^k

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon