Given : →a=3^i+2^j+2^k and →b=^i+2^j−2^k
(→a+→b)=(3^i+2^j+2^k)+(^i+2^j−2^k)
⇒(→a+→b)=4^i+4^j+0^k
(→a−→b)=(3^i+2^j+2^k)−(^i+2^j−2^k)
⇒(→a−→b)=2^i+0^j+4^k
Let →c=(→a+→b)×(→a−→b)
→c=∣∣
∣
∣∣^i^j^k440204∣∣
∣
∣∣
⇒→c=^i[(4×4)−(0×0)]
−^j[(4×4)−(2×0)]
+^k[(4×0)−(2×4)]
⇒→c=^i(16−0)−^j(16−0)+^k(0−8)
⇒→c=16^i−16^j−8^k
Unit vector→c=→cmagnitude of→c
→c=(16^i−16^j−8^k)√(16)2+(−16)2+(−8)2
→c=(16^i−16^j−8^k)√256+256+64
→c=(16^i−16^j−8^k)√576
→c=(16^i−16^j−8^k)24
→c=23^i−23^j−13^k
∴Unit vector →c(^c)=23^i−23^j−13^k