wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find a unit vector perpendicular to each of the vectors a + b and a - b, where a=3^i+2^j+2^k and b=^i+2^j2^k

Open in App
Solution

Given that a=3^i+2^j+2^k and b=^i+2^j2^k
a+b=(3^i+2^j+2^k)+(^i+2^j2^k)=4^i+4^j+0^k
and ab=(3^i+2^j+2^k)(^i+2^j2^k)=2^i+4^k
Now, (a+b)×(ab)=∣ ∣ ∣^i^j^k440204∣ ∣ ∣
=^i(160)^j(160)+^k(08)=16^i16^j8^k|(a+b)×(ab)|=(16)2+(16)2+(8)2=256+256+64=576=24
A unit vector, perpendicular to both (a + b) and (a - b) is
±(a+b)×(ab)|(a+b)×(ab)|=±16^i16^j8^k24=±8(2^i2^j1^k)24=±13(2^i2^j^k)
Required vector is either 23^i23^j13^k or 23^i+23^j+13^k


flag
Suggest Corrections
thumbs-up
22
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Addition
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon