Find a unit vector perpendicular to each of the vectors a + b and a - b, where a=3^i+2^j+2^k and b=^i+2^j−2^k
Given that a=3^i+2^j+2^k and b=^i+2^j−2^k
a+b=(3^i+2^j+2^k)+(^i+2^j−2^k)=4^i+4^j+0^k
and a−b=(3^i+2^j+2^k)−(^i+2^j−2^k)=2^i+4^k
Now, (a+b)×(a−b)=∣∣
∣
∣∣^i^j^k440204∣∣
∣
∣∣
=^i(16−0)−^j(16−0)+^k(0−8)=16^i−16^j−8^k⇒|(a+b)×(a−b)|=√(16)2+(−16)2+(−8)2=√256+256+64=√576=24
∴ A unit vector, perpendicular to both (a + b) and (a - b) is
±(a+b)×(a−b)|(a+b)×(a−b)|=±16^i−16^j−8^k24=±8(2^i−2^j−1^k)24=±13(2^i−2^j−^k)
∴ Required vector is either 23^i−23^j−13^k or −23^i+23^j+13^k