Find a vector of magnitude 5 units and parallel to the resultant of the vectors a=2^i+3^j−^k and b=^i−2^j+^k.
Given vectors a=2^i+3^j−^k and b=^i−2^j+^k.
Let →c be the resultant of a and b.
∴ c=a+b=(2^i+3^j−^k)+(^i−2^j+^k)⇒ c=3^i+^j+0^k
Comparing with X=x^i+y^j+z^k
∴ |c|=√x2+y2+z2=√32+12=√9+1=√10
∴ Unit vector in the direction of c, ^c=c|c|=3^i+^j√10
Hence, the vector of magnitude 5 units and parallel to the resultant of vectors a and b is ± 5 ^c=± 51√10 (3 ^i+^j)=±3√102 ^i±√102 ^j