It is given that a → =2 i ^ +3 j ^ − k ^ and b → = i ^ −2 j ^ + k ^ .
The resultant of vector a → and b → is a → + b → .
( a → + b → )=( 2+1 ) i ^ +( 3−2 ) j ^ +( −1+1 ) k ^ ( a → + b → )=3 i ^ +1 j ^ +0 k ^
Consider c → =( a → + b → ), then c → =3 i ^ +1 j ^ +0 k ^ .
The magnitude of c → is,
| c → |= 3 2 + 1 2 + 0 2 | c → |= 9+1 | c → |= 10
The unit vector in direction of c → is,
c ^ = 1 | c → | × c → c ^ = 1 10 ×[ 3 i ^ + j ^ +0 k ^ ] c ^ = 3 10 i ^ + 1 10 j ^
If vector with unit magnitude is c ^ , then vector with 5magnitude is,
5 c ^ =5×( 3 10 i ^ + 1 10 j ^ ) 5 c ^ = 15 10 i ^ + 5 10 j ^ 5 c ^ = 3 2 10 i ^ + 10 2 j ^
Thus, the vector parallel to the resultant vector with magnitude 5units is 3 2 10 i ^ + 10 2 j ^ .