Given
→a=4^i−^j+3^k
→b=−2^i+^j−2^k
Calculate →a×→b.
⇒∣∣ ∣ ∣∣ˆiˆjˆk4−13−21−2∣∣ ∣ ∣∣⇒^i(2−3)−^j(−8+6)+^k(4−2)
⇒−^i+2^j+2^k
Again,
∣∣→a×→b∣∣=√1+4+4=3
Therefore, required vector is,
=63(−^i+2^j+2^k)
=−2^i+4^j+4^k
Hence, this is the required result.