We have, A=[1231−2−3] and B=⎡⎢⎣1−1121−2⎤⎥⎦
Now, AB=[1231−2−3]⎡⎢⎣1−1121−2⎤⎥⎦
AB=[1+2+3−1+4−61−2−3−1−4+6]
∴AB=[6−3−41]
Now, we get M11=1,A11=(−1)1+1(1)=1
M12=−4,A12=(−1)1+2(−4)=4
M21=−3,A21=(−1)2+1(−3)=3
M22=6,A22=(−1)2+2(6)=6
∴adj(AB)=[1436]T=[1346]
and |AB|=∣∣∣1346∣∣∣=6−12=−6≠0
∴ Using A−1=1|A|adjA
∴(AB)−1=−16[1346] which is the required inverse.