Note that if a>1 then the left-hand side is even,
∴a=1.
If b > 2 then 3 divides b! + c! and hence 3 does not divide the left-hand side.
∴b=1 or b=2.
If b=1 then c!+2=3d, so c<2 and
∴d=1.
If b=2 then c!=3d−3.
Note that d=1 does not give any solution.
If d > 1 then 9 does not divide c!, so c < 6.
By checking the values for c=2,3,4,5 we see that c=3 and c=4 are the only two solutions.
∴(a,b,c,d)=(1,1,1,1),(1,2,3,2) or (1,2,4,3).