argz1z2=argz1−argz2
Let z=x+iy
arg3(x−2)+i3(y−1)2(x−4)+i2(y−3)=π4
∴tan−1y−1x−2−y−3x−4=π4
∴y−1x−2−y−3x−41+(y−1)(y−3)(x−2)x−4()=tanπ4=1
2x−2y−2=x2+y2−6x−4y+11
or x2+y2−8x−2y+13=0 ...(1)
and |z−3+i|=3
⇒(x−3)2+(y+1)2=9
x2+y2−6x+2y+1=0 ...(2)
Subtracting (1) and (2), we get
x+2y=6∴x=6−2y
Putting in (1), 5y2−10y+1=0
∴y=1+2√5,1−2√5
∴x=4+4√5,4−4√5
∴z=x+iy where (x,y) is (4−4√5,1+2√5)and (4+4√5,1−2√5)