wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find all functions f(x) defined on (π2,π2) with real values and has a primitive F(x) such that f(x)+cosx.F(x)=sin2x(1+sinx)2. Then find f(x).

A
f(x)=2cosx(1+sinx)2Cecosx.sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(x)=2cosx(1+sinx)2Cesinx.cosx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
f(x)=2cosx(1+cosx)2Cesinx.sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f(x)=2cosx(1+sinx)2Cecosx.cosx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B f(x)=2cosx(1+sinx)2Cesinx.cosx
f(x)=F(x)+cf(x)=F(x)
Let F(x)=yF(x)=dydx
f(x)+cosx.F(x)=sin2x(1+sinx)2
dydx+cosx.y=sin2x(1+sinx)2 ....(1)
Here P=cosxPdP=cosxdx=sinx
I.F.=esinx
Multiplying (1) by I.F., we get
esinx.dydx+esinx.cosx.y=esinx.sin2x(1+sinx)2
Integrating both sides, we get
y.esinx=2esinx.sin2x(1+sinx)2+c
Put sinx=tcosxdx=dt
y.et=et(t+11)(1+t)2dt=2et{1t+1+1(1+t)2}+c
yet=2ett+1+cyesinx=2esinxsinx+1+cy=2sinx1+c.esinx
f(x)=dydx=2cosx(sinx+1)2C.esinx.cosx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon