cosx+cosy−cos(x+y)=32
⇒2cos(x+y2)cos(x−y2)−2cos2(x+y2)+1=32
⇒4cos2(x+y2)−4cos(x−y2)cos(x+y2)+1=0
⇒(2cos(x+y2)−cos(x−y2))2+sin2(x−y2)=0
⇒2cos(x+y2)−cos(x−y2) or sin(x−y2)=0
⇒x−y=4nπ or x+y=4mπ±2π3
⇒x−y=2(2n+1)π or x+y=4mπ±4π3
⇒x=2(m+n)π±π3 or y=2(m−n)π±π3
⇒x=(2m+2n+1)π±2π3 or y=(2m−2n−1)π±2π3