Find all pairs (x,y) of real numbers such that 16x2+y+16x+y2=1.
Open in App
Solution
We have, 16x2+y+16x+y2=1 x2+y+x+y2+12=(x+12)2+(y+12)2≥0 This shows that x2+y+x+y2≥−12 By AM-GM inequality, 1=16x2+y+16x+y2≥2(16x2+y.16x+y2)12 2(16x2+y+x+y2)12≤2(16)−14=1 . This equality holds every where ∴(x+12)2+(y+12)2=0 ∴(x,y)=(12,12)