To take any point on the line x+y=3 ......(1)
Let x=α, then from (1),y=3−α
∴P(α,3−α) is any point on the line (1)
It will be a required point if its perpendicular distance from the line
x−y=5 is 5 units
⇒|α−(3−α)−5|√12+12=5
⇒|α−3+α−5|√2=5
⇒|2α−8|√2=5
⇒2α−8=±5√2
⇒2α=8±5√2
∴α=8+5√22,8−5√22
Hence, the required points are (132,3−8+5√22) and (32,3−8−5√22)
or (132,6−8−5√22) and (32,6−8+5√22)
or (132,−2−5√22) and (32,−2+5√22)