To take any point on the line x+y=6 ......(1)
Let x=α, then from (1),y=6−α
∴P(α,6−α) is any point on the line (1)
It will be a required point if its perpendicular distance from the line
2x−4y=5 is 4 units
⇒|2α−4×(6−α)−5|√22+42=4
⇒|2α−24+4α−5|√4+16=4
⇒|6α−29|√20=4
⇒|6α−29|2√5=4
⇒6α−29=±8√5
⇒6α=29±8√5
∴α=29+8√56,29−8√56
Hence, the required points are (29+8√56,6−29+8√56) and (29−8√56,6−29−8√56)
or (29+8√56,36−29−8√56) and (29−8√56,36−29+8√56)
or (29+8√56,7−29√56) and (29−8√56,7−29√56)