The correct options are
A 1,5,2
C 2,1,5
D 5,2,1
Here, x,y,z are integers and 5 is a prime number.
⇒ xyz.yzx.zxyxyz=5
⇒ xyz−1.yzx−1.zxy−1=5 is only possible, if
Case I: xyz−1=5, yzx−1=1, zxy−1=1
⇒ x=5, yz−1=1 ⇒ yz=2
⇒ y=2 and z=1
∴ (x,y,z)=(5,2,1)
Case II: xyz−1=1, yzx−1=5, zxy−1=1
∴ (x,y,z)=(1,5,2)
Case III: xyz−1=1, yzx−1=1, zxy−1=5
∴ (x,y,z)=(2,1,5)