By putting x=0, we get f(yf(0))=0
If f(0)≠0, then yf(0)takesallrealvalueswhenyvariesoverreallineWegetf(x) =0Supposef(0) = 0Takingy = x,wegetf(x^2- xf(x))= 0forallrealxSupposethereexistsx_0\neq 0inRsuchthatf(x_0) = 0Puttingx = x_0inthegivenrelationwegetf(x^2_0)=x_0f(x_0 + y)forally\in RNowtheleftsideisaconstantandhenceitfollowsfa′constantfunction′.Buttheonlyconstantfunctionwhichsatisfiestheequationisidenticallyzerofunction,whichisalreadyobtained.Hencewemayconsiderthecasewheref(x) \neq 0forallx \neq 0.Sincef(x^2+xf(x))= 0,weconcludethatx^2+xf(x) = 0forallx \neq 0.Thisimpliesthatf(x) = xforallx\neq 0.Sincef(0) = 0,weconcludethatf(x) = xforallx \in R.Thuswehavetwofunctions:f(x)= 0andf(x) = xforallx \in R$.