We know that the sum of the measure of opposite angles in a cyclic quadrilateral 180∘ Therefore, ⇒∠A+∠C=180∘.
⇒4y+20−4x=180∘
⇒−4x+4y=160∘
⇒x−y=−40∘ ....(i)
Also, ∠B+∠D=180∘
⇒3y−5−7x+5=180∘
⇒−7x+3y=180∘ .....(ii)
Multiplying equation (i) by 3, we obtain
3x−3y=−120∘ ......(iii)
Adding equations (ii) and (iii) we obtain,
⇒−7x+3x=(180−120)∘
⇒−4x=60∘
⇒x=−15∘
By using equation (i), we obtain,
x−y=−40∘
⇒−15−y=−40∘
⇒y=−15+40=25∘
∠A=4y+20=4(25)+20=120∘
∠B=3y−5=3(25)−5=70∘
∠C=−4x=−4(−15)=60∘
∠D=−7x+5=−7(−15)+5=110∘