Find all the values (12+i√32)4. Hence prove that the product of the four values is 1.
Open in App
Solution
Given that (12+√32)34=r(cosθ+isinθ) We have to write it in Polar form i.e., r=∣∣∣12+i√32∣∣∣=
⎷(12)2+(√32)2 =√14+34=1 ∴r=1 cosθ=12
sinθ=√32⇒θ=π3 ∴ The general Polar from is cos(π3+2nπ)+isin(π3+2nπ) Apply De Moivre's Theorem we get (12+i√32)34=[cos34(π+6nπ3)isin34(π+6nπ3)] =[cos(π+6nπ4)+isin(π+6nπ3)] ..... (1) Substitute n=0,1,2,3 in equation (1), we get for n=0. [cos(π+6(0)π4)+isin(π+6(0)π4)]=cos(π4)+isin(π4) For n=1, [cos(π+6(1)π4)+isin(π+6(1)π4)]=cos(π4)+isin(7π4) III ly For n=2 is cos(13π4+isin13π4) For n=3 is cos(19π4+isin19π4) ∴ the product of four values is cos[π4+7π4+13π4+19π4]+isin[π4+7π4+13π4+19π4] =cos(40π4)+isin(40π4) =cos(10π)+isin(10π) =[cos(π)+isin(π)]10=[1+0]10=1 Hence, proved.