wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find all the values (12+i32)4. Hence prove that the product of the four values is 1.

Open in App
Solution

Given that (12+32)34=r(cosθ+isinθ)
We have to write it in Polar form
i.e., r=12+i32= (12)2+(32)2
=14+34=1
r=1
cosθ=12
sinθ=32θ=π3
The general Polar from is
cos(π3+2nπ)+isin(π3+2nπ)
Apply De Moivre's Theorem we get
(12+i32)34=[cos34(π+6nπ3)isin34(π+6nπ3)]
=[cos(π+6nπ4)+isin(π+6nπ3)] ..... (1)
Substitute n=0,1,2,3 in equation (1), we get for n=0.
[cos(π+6(0)π4)+isin(π+6(0)π4)]=cos(π4)+isin(π4)
For n=1,
[cos(π+6(1)π4)+isin(π+6(1)π4)]=cos(π4)+isin(7π4)
III ly
For n=2 is cos(13π4+isin13π4)
For n=3 is cos(19π4+isin19π4)
the product of four values is
cos[π4+7π4+13π4+19π4]+isin[π4+7π4+13π4+19π4]
=cos(40π4)+isin(40π4)
=cos(10π)+isin(10π)
=[cos(π)+isin(π)]10=[1+0]10=1
Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon