The correct option is D 2√2<a<113
Given equation is
x2−ax+2=0
For roots to lie in the interval (0,3) following conditions should hold:
1) D≥0
⇒a2−8≥0
⇒(a+2√2)(a−2√2)≥0
⇒a∈(−∞,−2√2)∪(2√2,∞) ....(1)
2) 0<−b2a<3
⇒0<a2<3
⇒a>0 and a<6 ....(2)
3)a⋅f(0)>0
which is true for all a>0
4) a⋅f(3)>0
9−3a+2>0
a<113 ....(3)
From equations (1),(2) and (3), we get
a∈(2√2,113).