The correct option is A For all a∈(−∞,−6)
The inequality (a+4)x2−2ax+2a−6<0 has to be satisfied for all x∈R. Only possible when, coefficient of x2 and discriminant value are less than zero.
⇒a+4<0 and 4a2−4(a+4)(2a−6)<0
⇒a∈(−∞,−4) and a2+2a−24=(a+6)(a−4)>0
⇒a∈(−∞,−4) and a∈(−∞,−6)∪(4,∞)
∴a∈(−∞,−6)
Hence, option A.