1. x2+3k2−1≥2k(2x−1)
⇒x2−4kx+2k+3k2−1≥0
⇒(x−4k±√16k2+4−8k−12k22)≥0
⇒x−2k±√k2−2k+1≥0
⇒(x−2k±(k−1))≥0
⇒(x−k−1)(x−3k+1)≥0
⇒x∈(−∞,k+1)∪(3k−1,∞)
2. x2−(2x−1)k+k2≥0
⇒x2−2xk+k+k2≥0
⇒x−2k±√4k2−4k−4k22≥0
⇒x−k±√−k≥0
⇒(x−k+√−k)(x−k−√−k)≥0
Case 1 When k>0, for k>0, 2 has a negative discriminant, so it is greater than zero ,∀x∈R
So, 3∈R,∀x∈R
Values of k, k∈(0,∞)
Case 2 When k<0, 2 has a domain, x∈(−∞,k−√−k)∪(√−k+k,∞)
So, set 3 becomes , x∈(−∞,3k−1)∪(k+1,∞) as k<0
Now, set in 6 must be a subset of set in 6.
1.⇒3k−1<k−√−k
⇒2k−1<−√−k
⇒4k2−4k+1<−k
⇒4k2−3k+1<0
⇒D<0,a>0, equation must be greater than zero so it can not be negative.
k∈ϕ for k<0
⇒k∈(0,∞)is the condition to get the above statement.