1. x2+4kx+3k2>1+2k
x2+4kx+3k2−1−2k>0
⇒(x−4k±√16k2+4+8k−12k22)>0
⇒(x−4k±2√k2+2k+12)>0
⇒x+2k±k+1>0
⇒(x+3k+1)(x+k−1)>0 - Equation 1
2. x2+2kx≤3k2−8k+4
⇒x2+2kx−3k2+8k−4≤0
⇒x−−2k±√4k2+12k2−32k+162
⇒x+k±2(k−1)≤0
⇒(x+3k−2)(x−k+2)≤0 - Equation 2
Critical points are −3k−1,−k+1,−3k+2,k−2
For 1, x∈(−∞,−3k−1)∪(−k+1,∞)
For 2, x∈(−3k+2,k−2)
For common solution, the above must have some interaction or they are subset of each other.
1. ⇒−3k+2<−3k−1⇒nosolution.
2. ⇒k−2>−k+1
⇒2k>3
⇒k>32
⇒k∈(32,∞)