Find an approximation of (0.99) 5 using the first three terms of its expansion.
Open in App
Solution
The given expression is (0.99)5
We can write 0.99as 0.99=1−0.01
Expanding the given expression using Binomial Theorem (0.99)5=(1−0.01)5=(C50(1)5−0(0.01)0−C51(1)4(0.01)1+C52(1)3(0.01)2−C53(1)2(0.01)3+C54(1)1(0.01)4−C55(1)0(0.01)5)=1−5(0.01)+10(0.01)2−10(0.01)3+5(0.01)4−1(0.01)5=1−0.05+0.001−0.00001+0.0000005−0.000000001=0.951 [Approximately]
Thus, the value of (0.99)5 is approximately 0.951.