Find an expression for cos3x in terms of cosx.
Solve for the value of cos3x in terms of cosx.
Expand 3xas 2x+x in the expression.
⇒cos3x=cos2x+x
Use trignometric identity cos(a+b)=cosa.cosb-sina.sinb
Applying the identity in the above expression.
⇒cos3x=cos2x.cosx-sin2x.sinx=-1+2cos2xcosx-2sinx.cosx.sinx[∵1+cos2x=2cos2x,sin2x=2sinxcosx]=2cos3x-2sin2xcosx-cosx=2cos3x-21-cos2xcosx-cosx=4cos3x-3cosx
Hence, cos3x=4cos3x-3cosx.
derive an expression to find power in terms of force and velocity
deduce an expression for angular velocity and angular acceleration in terms of SHM