(i)f(x)=x3−3x2+2x on [0,12]
Since f(x) is continuous on [0,12] and differentials on [0,12].
Mean value theorm can be applied.
f′(x)=x3−3x2+2x
f(0)=0
f(12)=(12)3−(12)2+2(12)=18−34+1=8−6+18=38
According to MVT,
[f(b)−f(a)](b−a)=f′(c)⇒(38)−0(12−0)=3c2−6c+2⇒(3c2−6c+2)=3×24=34⇒12c2−24c+8=3⇒12c2−24c+5=0⇒12c2−24c+5=0⇒c=24±√(24)2−4(12)(5)24=24±√576−24024=24±√33624⇒c=1±√216=0.236or1.764
Since the domain of f(x) given [0,12],C must be 0.236
(ii)
f(x)=√25−x2 on [0,5]
f′(x)=12√25−x2(−2x)=−x√25−x2∴[f(b)−f(a)](b−a)=f′(c)⇒[f(5)−f(0)](5−0)=−c√25−c2⇒(√25−25)−√25−05=−c√25−c2⇒0−55=−c√25−c2⇒−1=−c√25−c2⇒25.c2=c2⇒2c2=2.5⇒c=52
(iii)
f(x)=√x+2 on [4,6]
f′x=12√x+2
⇒[f(b)−f(a)](b−a)=f′(c)=[f(6)−f(4)](6−4)=12√c+2⇒(√8)−√65=12√c+2⇒(√8+√6)=1√c+2⇒8+6+8√3=1(c+2)⇒14+8√3=1c+2⇒c+2=114+8√3×14.8√314.8√3=14−8√3196−192=14−8√34⇒c+2=7−4√32⇒c=72−2−2√3=32−2√3