Find C using language's main value.
F(x)=x2−4xx+2[0,4]
→ condition for mean value theorem
1. f(x) is continuous at (a,b)
2. f(x) is derivable at (a,b)
If both condition satisfied then these exists
some c in (a,b) such that
f′(c)=f(b)−f(a)b−a
→f(x)=x2−4xx+2 a = 0 , b = 4
f′(x)=(x+2)[2x−4]−(x2−4x)(1)(x+2)2
=2x2−4x+4x−8−x2+4x(x+2)2
f′(x)=x2+4x−8(x+2)2
f′(c)=c2+4c−8(c+2)2
→f(b)=(a)2−4(h)4+2=0
→f(a)=(0)2−4(0)0+2=0
→f′(c)=f(b)−f(a)b−a
∴c2+4c−8(c+2)2=04
∴c2+4c−8=0 & (c+2)2≠0
∴ root of the equation α,β=−4±√16−4×82
α,β=−4±√−162=−4±√16i22=−4±4i2