wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find co-factors of the matrix,
A=1000cosαsinα0sinαcosα

Open in App
Solution

Let A=1000cosαsinα0sinαcosα

Here, |A|=cos2αsin2α
|A|=1 (sin2α+cos2α=1)
Since, |A|0
Hence, A1 exists.

We have A1=adjA|A|
and adjA=CT

So, we will find the co-factors of each element of A.
C11=(1)1+1cosαsinαsinαcosα
C11=(sin2α+cos2α)=1

C12=(1)1+20sinα0cosα
C12=(00)=0

C13=(1)1+30cosα0sinα
C13=00=0

C21=(1)2+100sinαcosα
C21=(00)=0

C22=(1)2+2100cosα
C22=(cosα0)=cosα

C23=(1)2+3100sinα
C23=(sinα0)=sinα

C31=(1)3+100cosαsinα
C31=(00)=0

C32=(1)3+2100sinα
C32=(sinα0)=sinα

C33=(1)3+3100cosα
C33=(cosα0)=cosα

Hence, the co-factor matrix of A is
C=1000cosαsinα0sinαcosα

adjA=CT=1000cosαsinα0sinαcosα

Now, A1=adjA|A|=111000cosαsinα0sinαcosα

A1=1000cosαsinα0sinαcosα

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Operations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon