First of all we should resolve the equation of parabola ,
e.g., y=x²+7x+2=x²+7x+(7/2)²+2−(7/2)²
y=x²+2.(7/2)x+(7/2)²+2−49/4
y=(x+7/2)²−41/4
now, we can let the point on the parabola .e.g.,(t−7/2),t²−41/4
Now, A/C to question, point perpendicular distance from the point (t−7/2),(t²−49/4) to line y=3x−3 is shortest LetP
P=|3(t−7/2)−(t²−41/4)−3|/√3²+1²
P=|3t−21/2−t²+41/4−3|/√10
now, differentiate P with respect to t { applying maximam and minimam concept }
dP/dt=|3−0−2t+0−0|/√10
dp/dt=0
3−2t=0⇒t=3/2
at t=3/2,(t−7/2),(t²−41/9)≡(3/2−7/2),(9/4−41/4)≡(−2,−8)
Hence, closest point on the parabola y=x²+7x+2 which is closest to