Find coordinates of the point of trisection of the line segment joining the points
A(4,8) and B(-2,4).
P=(2,203)Q=(0,163)
m1:m2=1:2=AP:PB
(x1,y1)=(4,8)
(x2,y2)=(−2,4)
∴x=m1x2+m2x1m1+m2=(1)(−2)+2(4)1+2=63=2
∴y=m1y2+m2y1m1+m2=(1)4+2(8)3=203
∴PointP=(2,203)
For Q
m1:m2=2:1=AQ:QB
(x1,y1)=(4,8):(x2y2)=(−2,4)
∴x=m1x2+m2x1m1+m2=2(−2)+1(4)3=0
∴y=m1y2+m2y1m1+m2=2(4)+1(8)3=163
∴Q=(x,y)=(0,163)