Let P (x1, y1) and Q (x2, y2) are the points of trisection of the line segment joining the given points.
⇒ AP = PQ = QB
Therefore, point P divides AB internally in the ratio 1:2 so using section formula.
(x = m1x2+m2x1m1+m2 y = m1y2+m2y1m1+m2)
In this case (m1=1,m2=2 and x1=4,x2=−2,y1=−1,y2=3)
x1=1×(−2)+2×41+2,y1=1×(−3)+2×(−1)1+2
x1=−2+83=63=2,y1=−3−23=−53
Therefore,
P(x1,y1)=(2,−53)
Point Q divides AB internally in the ratio 2:1
x2=2×(−2)+1×42+1,y1=2×(−3)+1×(−1)2+1
x2=−4+43=0,y2=−6−13=−73
P(x2,y2)=(0,−73)